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Abstract. The general Schrodinger equation is converted into equivalent ( 2 t +  1)-term 
recurrences by the generalised Lanczos construction of the basis. Then, the exact bound 
states are given by the 1-parametric determinantal formula. Finally, the values of the free 
parameters are shown to follow from the Hill type normalisability requirement. 

1. Introduction and contents 

In a preceding paper I (Znojil 1983a), we have described the algebraic construction 
of the approximate effective Hamiltonians H e f f  by means of solving certain nonlinear 
algebraic equations for their matrix elements. This was based on a very weak ‘smooth- 
ness’ assumption concerning the original Hamiltonian H, with systematic improvements 
to be done in the spirit of the standard perturbation methods. 

One of the possible techniques of the related perturbation-type expansions was 
described recently (Znojil 1983b) in a somewhat different context. The underlying 
fixed-point formalism is merely a generalisation of the expansion (or convergence 
theory, Znojil 1980a) applicable to the analytic continued fractions. 

Unfortunately, the fixed-point algebra and formulae seem to be rather complicated. 
In the present paper, an alternative approach will, therefore, be described. 

In essence, we shall merely reverse the direction in the recurrences of I. This will 
simplify the algebraic formalism-the corresponding details are given in 5 2. Of course, 
the formal symmetry between the original and reversed recurrences may also be 
partially recovered-via analogy with the respective Jost and regular solutions to the 
differential equations, this is illustrated in 9 2.3. 

From the physical point of view, only the normalisable solutions are relevant. 
Preserving the above analogy, a part of the results of I may, therefore, be used here 
after a due re-interpretation. First of all, the original variational truncation of constant 
chain initialisations re-appears here as the physical asymptotic boundary conditions. 
Precisely, they will also fix the physical values of the present initialisations. In this 
way, our algebraic eigenvalue method becomes independent of its variational back- 
ground and it acquires the fully rigorous, mathematically independent foundations (§ 3).  

The first two examples of application of the present method are investigated in 
more detail in § 4. For the anharmonic power law (§ 4.1) as well as some other (0 4.2) 
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oscillators, the rate of convergence and asymptotics are obtained even without recourse 
to the numerical computations. 

In both paper I and here, our attention is paid to the Schrodinger eigenvalue problem 

such that ( m / H / n )  = 0 for lm - n/  > t =constant. For the general Hamiltonian, this is 
to be understood either as a new, infinite-dimensional type of the solvable truncation 
(cf I) or, without any approximations, as the exact and universal formulation of the 
Schrodinger eigenvalue problem written in the generalised Lanczos (1950) basis 1 n )  
(§ 2.1, see also Znojil 1980b). This is discussed and summarised in 0 5. 

2. Closed form of the wavefunctions 

2.1. Generalised Lanczos basis 

With the first non-trivial parameter t = 1 in ( l . l ) ,  the matrix H becomes tridiagonal. 
Such a form is considered 'trivial' from the purely numerical point of view-most of 
the numerical eigenvalue algorithms contain a transition to an equivalent tridiagonal 
matrix as a preparatory step (Wilkinson 1965). 

Such a transition corresponds to a unitary transformation of the whole basis. It 
represents of course a serious complication in the infinite-dimensional cases. The 
solution of this problem was given by Lanczos (1950)-we may choose only the first 
basis state 11) a priori. Then, we must generate the next ones, 12), (3), . . . as the 
orthonormalised parts of Hl l ) ,  H ) 2 ) ,  . . . , respectively. Thus, the operator H will be 
represented by the tridiagonal matrix in this 'Lanczos' basis, as a consequence of the 
related algebra. By using the biorthogonal sets of bra and kets, we may treat even 
the non-Hermitian operators in the same way-see Wilkinson (1965) for further 
details. 

In Znojil (1980b), such a procedure was generalised in an obvious way-we may 
choose t arbitrary states Il), 12), . . . , It) and then generate the next ones in an analogous 
way. In detail, the (orthonormalised) states lkt+ i ) ,  i = 1 , 2 , .  . . , t will be generated 
by the action of the operator H on the preceding t-plet I( k - 1 ) t  + j ) ,  j = 1 , 2 ,  . . , , t. 
Thus, in full analogy with the t = 1 special Lanczos case, we obtain H in the required 
band-matrix form without any approximations. 

2.2. General algebraic solution of the (2t+ 1)-term recurrences by the determinantal 
formula 

The infinite set of the linear algebraic equations ( l . l ) ,  i.e., 

represents, irrespective of its interpretation, the algebraic set of recurrences. In 
particular, we may pick up t values zl, z 2 , .  . . , z, and express the remaining z,, n 7 t, 
as their linear superpositions. 
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Theorem 1. The general solution of (2.1) is given by the formula 

zn+f = zm (o) !il)n c ( o )  det (I;?;, n s l  
m = l  c 1  c2 . .  . 

where 
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(2.2) 

and 

$ 1  = 2 km 1 k = 1 , 2  , . . . ,  min(n , t+m)  

i = 0 , 1 , .  . . , min(k - 1,2 t ) ,  k = 1 , 2 , .  . . , n. 
(2.4) 

c ( i )  = 
k x k k + r - ! >  

Proof, We have to guarantee that (2.2)-(2.4) represent the solution of (2.1) for any 
set of parameters z,, 0 < m s t. Formally, we may, therefore, choose a fixed m and 
put z ,  = 0, 0 < n s t, n # m. This converts (2.1) into the simpler relation 

and the solution (2.2) becomes obvious and/or verifiable by the mathematical induction 
with respect to n. 

A priori, the input parameters zl, z2 , .  . . , z,  in (2.2) are completely free. Indeed, 
the nth row of (2.1) defines the component zt+,, of the solution (2.2) in an unambiguous 
way. In the various physical interpretations of (2.1), such a freedom is usually 
removed-e.g., in the eigenvalue problem ( l . l ) ,  the bound states are defined by the 
series X ln)zn and the condition 

l l + l l (  = (  f l = l  f Z y 2 )  <a (2.5) 

is strong enough to fix not only the binding energy, but also the projections z,, m s t 
(up to the degenerate levels of course). 

It is interesting to notice that the standard truncation method fixes the projections 
zl ,  z 2 , .  . . , z,. We shall see below how the other eigenvalue methods may be based 
on theorem 1. 

2.3. The t = 1 example-an s-wave Schrodinger equation in the finite-difference approxi- 
mation scheme 

As an example of (2.1) with an origin different from ( l . l ) ,  we may again consider the 
Schrodinger equation 

[-d2/dr2+ V ( r ) ] + ( r )  = E + ( r ) ,  r s O .  (2.6) 
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Contrary to (l.l), we merely replace its second derivative by the approximate formula 

d2$(r) /dr2= h-2[$(r+ h ) - 2 $ ( r ) + $ ( r -  h ) ] ,  h - 0 ,  (2.7) 

and consider the values $( r l )  on the discrete mesh of coordinates rl = h and ri = ri-] + h, 
i = 2 , 3 , .  . . . 

In the limit h + 0, the explicit solution (2.2) of the resulting approximate tridiagonal 
form 

- l / h 2 ,  V ( r 2 ) - E + 2 / h 2 ,  - l / h2 ,  0 ,  . . , ) ( $ ( r 2 ) )  = O  (2.8) 

of (2.6), coincides with the so called regular solution $ = $R. Indeed, being initialised 
by +R(0) = O ,  $k(O) = 1 or I + ~ ~ ( O )  = 1, $k(O) = 0 for odd or even parity (Newton 1965), 
it enables us to put $R(r1)  = h or $ R ( r ] )  = 1 in (2.8), respectively. 

For the reasonable potentials V (  r ) ,  the physical and/or non-physical asymptotic 
behaviour of $R is known. Hence, an elimination of the latter is easy and, reflecting 
the physical requirement analogous to (2.5), it fixes the binding energy. In the 
computational practice, this is a standard technique. 

A similar construction may be developed also for the so called Jost solutions +,(r) 
defined by their physical behaviour at r + CO (Newton 1965). It is more complicated-in 
contrast to r = 0, the point r = CO is usually an essential singularity of (2.6). Hence, to 
transform (2.6) into a Jost analogue of (2.8), additional information about the 
physical asymptotics must be employed since the derivatives +;(CO) do not exist at all. 

For the differential equations of the general order 2t ,  t > 1,  the same approximative 
finite-difference scheme based on (2.7) may be used again-we have 

V ( r l ) - E + 2 / h 2 ,  - l / h 2 ,  0 ,  . . . $ ( r , )  

. . .  . . .  

so that it is easy to generalise (2 .8)  to its (2t+l)-diagonal forms. The Jost type 
approach encounters again its specific difficulties. In the present context, some of them 
will be discussed later. 

3. The physical boundary conditions for recurrences at n + 00 

Provided that the series I+) = >; In)z, diverges, no wavefunction $ ( r )  corresponds to  
the infinite-dimensional algebraic solution (2.2) of (1.1) at the non-physical energies 
and vice versa the convergence of ll$ll = Z z', implies that the wavefunction $ ( r )  exists. 
Thus, an adequate form of the convergence criterion may be postulated as the n + 00 

boundary condition in (2.2). It should be sufficient to eliminate all the unphysical 
t-parametric ambiguity from ( 2 . 2 ) ,  i.e., to fix z2 ,  2 3 , .  . . , z, and E. 

Its choice will depend on the properties of X In accordance with I, we shall restrict 
our attention to the simplest class of the asymptotically smooth Hamiltonians. 

3.1. Hamiltonians pertaining to the quickly convergent norm of $ 

Let us consider the real and symmetric asymptotically smooth ones. In accordance 
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with 0 4 of I, they have the property 

where a, are complex numbers in general, and 

As a typical illustration, we may recall the doubly anharmonic oscillators (DAHO) with 

H = p Z r  + g l p 2 r - 2 + .  . . + hlr2r-2+ r2‘ 

as defined in 0 4.3 of I. 
In the light of theorem 2 of I, formula (3.1) is symmetric with respect to the change 

ai + l/ai. Provided that ai # 1 are real for i = 1,2,  . . . , t, theorem 3 of I removes this 
ambiguity by the requirement 11 z 11 < 00, i.e., 

This is precisely the set of the boundary conditions which guarantees the convergence 
of $ in the norm. In the DAHO example, (3.3) may be achieved for t S 4 at least. 

Let us introduce an auxiliary variable 2, - Z N + t ,  N >> 1. Then, we may insert the 
explicit determinantal definitions (2.2) into (3.3) and get the linear relations 

Again, they are valid whenever a = maxla,[< 1 in the leading-order approximation. 
In (3.4), the last row and column may be expected to be negligible since cE’= 

1 +0(1 /N)  and zN = O ( a N ) .  Omitting them, we get an equivalent of the truncated 
set of equations (2.1), 

r 

j =  1 
dilz, = O ,  i = l , 2 , .  . . , I  (3 .5 )  

In practical applications, the use of (3.4) or (3.5) may suffer from the various 
numerical ill conditioning problems. Nevertheless, in the purely algebraic setting, these 
equations should determine completely both the energy parameter E and all the initial 
wavefunction projections z,, 0 < m S t. Hence, we may interpret (3.3) as an ‘asymptotic 
boundary condition’ pertaining to the general ‘regular-type’ solution (2.2) of our 
‘Schrodinger-type’ eigenvalue problem (2.1) and (2.5). 
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The above principle of the eigenvalue determination contains non-trivial informa- 
tion about the structure of 2 and zN, N >> l .  W e  may expect that (3.4) will be more 
powerful than the truncation technique in practice, provided that 2 is smooth enough. 

4. Examples 

4.1. Anharmonic oscillators 

In  the light of I, the particular anharmonic oscillator (AHO) example 

( p 2  + r2  + A r 4 + .  . . -t A,,,?+’) 9 = E$, A,,, > 0, m = t - l a l  (4.1) 

may be written exactly in the band matrix form (2.1). Consulting, e.g., Graffi and 
Grecchi (1975) for details, we may use the standard harmonic oscillator basis In). 

Explicit formulae (2.2)-(2.4) may be used without any problems. At  the same 
time, theorem 3 of I gives the explicit solution immediately-we get a = 1 in (3.3). 
This makes our derivation of (3.4) invalid. Hence, we must take the next corrections 
into account-the leading-order asymptotic estimate of the ratio z,/ zN-l appears t o  
be insufficient t o  ‘quantise’ equation (1.1) in an algebraic way. 

Of course, inclusion of the higher-order corrections is feasible in a direct way. 
Nevertheless, even without this (essentially non-numerical) procedure, we may con- 
clude that the convergence of CC, in the norm will be slow. Moreover, we see that 
zN = - zN-]  (1 + O( 1/N)) is a sequence with changing signs, i.e., wavefunctions may 
converge well in the coordinate representation. All this may be confirmed by the 
numerical studies (Graffi and Grecchi 1975 etc). 

Our  approach also permits the following analysis of the asymptotics. We take (4.1) 
in the form (2.1) o r  (1.1) and omit the first M rows, M 2 1, as irrelevant from the 
present point of view. Then, in the leading-order asymptotic approximation, we get 

(see I). This immediately clarifies the general 2t-parametric character of the initialisa- 
tions in infinity. 

Lemma 1. In the leading-order approximation, the AHO recurrences (4.2) admit the 
general solution 

(4.3) 

where ( y )  = 0 for n < j .  This solution possesses an infinite norm (X,, z;)’’~ whenever 
c,” Z 0, j o  Z 2 t - 1. 

Proof. First, let us notice that an infinite and homogeneous set of the linear algebraic 
equations 

4 + , ( P )  Y2 = o  
( . Y ‘ . )  

(4.4) 
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, I ~ * l ( l ) 1 2 r - l (  q 

has no finite-dimensional non-trivial solution since det I(+) = 1. Indeed, an  assumption 
yN+l  = 0, i 3 1 implies that yo = y 1  = . . . = yN = 0. Nevertheless, it admits a class of the  
non-trivial infinite-dimensional solutions 

. . .  

Concerning the norm, we have 

which is infinite whenever co = c1 = . . . = c,"-, = 0 and cl0 # 0 with io < 2t  - 1. The  
higher-order corrections influence its value and may cause convergence only when 
io = 2t - 1. 

4.2. Example with the slowly convergent norm-fractionally anharmonic oscillator 

In the harmonic oscillator basis, the one-body Schrodinger equation (2.6) with the 
potential 

(4.6) 

has a general matrix form. Putting X( E )  = (1 + gr2) (H  - E )  it may easily be re-written 
in the tridiagonal t = 1 form (2.1) (Whitehead et a1 1982). Of course, the solution 
may then be given the form (2.2). As far as t = 1, the only unknown projection z1 is 
merely an  irrelevant normalisation. 

The  matrix %'(E) is asymptotically smooth and satisfies (3.1) with CY = 1. Hence, 
theorem 3 of I is not applicable. A thorough analysis (Znojil 1983c) reveals its adequate 
modification (employing the d'Alembert criterion in place of (3.3)) and confirms again 
the validity of the secular equation (3.5), 

V( r )  = r2  + A r Z /  ( 1 + gr2)  

ZN = 0, N + m .  (4.7) 

This condition resembles strongly the standard Hill-determinant techniques (Ginsburg 
1982, etc). 
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Numerically, we may treat (4.7) in various ways. In a specific recurrent formulation 
directly resembling (3.3), this Hill-type approach has already been tested and gives 
almost correct energies even for the extremely low indices N (see, e.g., columns A1 
in table 1 of Znojil 1 9 8 3 ~ ) .  

5. Summary 

In this paper, an emphasis has been laid upon the fact that the general Schrodinger 
equation has a form of the forward-running ( 2 t  + 1)-term recurrences in the generalised 
Lanczos basis. Hence, it may be treated by purely algebraic means, which has the 
following merits. 

(i) The explicit determinantal formula may be used. It defines the general solution 
in a compact form, as a function of some t free parameters. Thus, we are constructing 
a ‘regular’ solution in a way parallelling the theory of ordinary differential equations. 

(ii) The results of I have specified the physical boundary conditions to be imposed 
in the n+m asymptotic region. This fixes all the free parameters and defines the 
physical energies and projections of the wavefunctions. 

(iii) The construction is mathematically rigorous-no variational-type assumptions 
are needed. 

(iv) In the computations, various eigenvalue algorithms ‘without truncation’ may 
be based on the present Hill-type equations (3.4). 

(v) A systematic inclusion of the higher-order asymptotic corrections is possible 
on a purely algebraic level. In particular, we believe that this will enable us to consider 
the convergence problems in a non-numerical setting in the future. 
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